Cova

The concepts of
coupling and cohesion
apply to both conven-
tional and 00
software. Keep closs
coupling Jow and class
and operation cohesion
high.

CHAPTER 15 PRODUCT METRICS 483

the parent class can be diluted if some of the children are not appropriate members
of the parent class. As NOC increases, the amount of testing (required to exercise
each child in its operational context) will also increase.

Coupling between object classes (CBO). The CRC model (Chapter 8) may be
used to determine the value for CBO. In essence, CBO is the number of collabora-
tions listed for a class on its CRC index card.!! As CBO increases, it is likely that the
reusability of a class will decrease. High values of CBO also complicate modifications
and the testing that ensues when modifications are made. In general, the CBO val-
ues for each class should be kept as low as is reasonable. This is consistent with the
general guideline to reduce coupling in conventional software:

Response for a class (RFC). The response set of a class is “a set of methods that
can potentially be executed in response to a message received by an object of that class”
[CHI94]. RFC is the number of methods in the response set. As RFC increases, the effort
required for testing also increases because the test sequence (Chapter 14) grows. It also
follows that, as RFC increases, the overall design complexity of the class increases.

Lack of cohesion in methods (LCOM). Each method within a class, C, accesses
one or more attributes (also called instance variables). LCOM is the number of meth-
ods that access one or more of the same attributes.'? If no methods access the same
attributes, then LCOM = 0. To illustrate the case where LCOM = 0, consider a class
with six methods. Four of the methods have one or more attributes in common (i.e.,
they access common attributes). Therefore, LCOM = 4. If LCOM is high, methods may
be coupled to one another via attributes. This increases the complexity of the class
design. Although there are cases in which a high value for LCOM is justifiable, it is
desirable to keep cohesion high; that is, keep LCOM low.'?

SAreHoOME

11 If CRC index cards are developed manually, completeness and consistency must be assessed be-
fore CBO can be determined reliably.

12 The formal definition is a bit more complex. See [CHI94] for details.

13 The LCOM metric provides useful insight in some situations, but it can be misleading in others. For
example, keeping coupling encapsulated within a class increases the cohesion of the system as a
whole. Therefore, in at least one important sense, higher LCOM actually suggests that a class may
have higher cohesion, not lower.

PART TWO SOFTWARE ENGINEERING PRACTICE

. Fwenit back to my Jamie: Maybe yes, maybe no. Vi sill
, like you suggested, time, and | don't want fo fix shuff iy

and LCOM. | couldnt vined: | agree with that. qubqwg»
. classes that have bad numbers in
the CK merics. Kind-of two sirtkes

Shakira (looking over Eid’ i
high RFC): Look, see this class®
well as a high RFC. Two strikes?

Vinod: Yeah | think so .. . itll be difficult
 difficult

Vinod: Overﬁ}eionghcmfm.

4 maybewe should take a

15.4.4 Class-Oriented Metrics—The MOOD Metrics Suite

Harrison, Counsell, and Nithi [HAR98] propose a set of metrics for object-oriented
design that provide quantitative indicators for OO design characteristics. A small
sampling of MOOD metrics follows:

Method inheritance factor (MIF). The degree to which the class architecture of
an OO system makes use of inheritance for both methods (operations) and attributes
is defined as

MIF = 2 M(C))/Z M,y(C)

where the summation occurs over i = 1 to T.. T, is defined as the total number of
classes in the architecture; C; is a class within the architecture; and

Ma(C)) = My(C) + Mi(C)
where

M,(C) = the number of methods that can be invoked in association with C..
M,(C) = the number of methods declared in the class C;.
M;(C) = the number of methods inherited (and not overridden) in C;.

The value of MIF (the attribute inheritance factor, AlF, is defined in an analogous
manner) provides an indication of the impact of inheritance on the OO software.

Gpwc:‘

During review of the
analysis mode, CRC
index cards will provide
a reasonable indication
of expected values for
(5. If you encounter a
class with a large
number of responsibili
ties, consider part-
fioning if.

CHAPTER 15 PRODUCT METRICS 485

Tf""ﬁeﬂﬂoemluufei!squufﬂyisbecuminghcr ingly i aﬁu[m}

Coupling factor (CF). Earlier in this chapter we noted that coupling is an indica-
tion of the connections between elements of the OO design. The MOOD metrics suite
defines coupling in the following way:

CF = 5,3, is_client (C;, C)/(T* - T)
where the summations occur over i = 1 to T and j = 1 to T.. The function

is_client = 1, if and only if a relationship exists between the client class, C.,
and the server class, C;, and C. # C,
= 0, otherwise

Although many factors affect software complexity, understandability, and maintain-
ability, it is reasonable to conclude that, as the value for CF increases, the complex-
ity of the OO software will also increase, and understandability, maintainability, and
the potential for reuse may suffer as a result.

Harrison and her colleagues [HAR98] present a detailed analysis of MIF and CF,
along with other metrics and examine their validity for use in the assessment of de-
sign quality.

15.4.5 OO Metrics Proposed by Lorenz and Kidd

In their book on OO metrics, Lorenz and Kidd [LOR94] divide class-based metrics
into four broad categories that each have a bearing on component-level design: size,
inheritance, internals, and externals. Size-oriented metrics for an OO design class
focus on counts of attributes and operations for an individual class and average val-
ues for the OO system as a whole. Inheritance-based metrics focus on the manner
in which operations are reused through the class hierarchy. Metrics for class inter-
nals look at cohesion and code-oriented issues, and external metrics examine cou-
pling and reuse. A sampling of metrics proposed by Lorenz and Kidd follows:

Class size (CS). The overall size of a class can be determined with the following
measures:

o The total number of operations (both inherited and private instance opera-
tions) that are encapsulated within the class.

e The number of attributks (both inherited and private instance attributes) that
are encapsulated by the class.

The WMC metric proposed by Chidamber and Kemerer (Section 15.4.3) is also a
weighted measure of class size. As we noted earlier, large values for CS indicate that

488

n
o,

POINT
(yclomatic complexity
is only one of o large
number of complexity
mefrics.

PART TWO SOFTWARE ENGINEERING PRACTICE

where the degree of coupling increases as the measures in Equation (15-6) increase.

Complexity metrics. A variety of software metrics can be computed to determine
the complexity of program control flow. Many of these are based on the flow graph.
As we discussed in Chapter 14, a graph is a representation composed of nodes and
links (also called edges). When the links (edges) are directed, the flow graph is a di-
rected graph.

McCabe and Watson [MCC94] identify a number of important uses for complexity
metrics:

Complexity metrics can be used to predict critical information about reliability and main-
tainability of software systems from automatic analysis of source code [or procedural de-
sign information]. Complexity metrics also provide feedback during the software project
to help control the [design activity]. During testing and maintenance, they provide de-
tailed information about software modules to help pinpoint areas of potential instability.

The most widely used (and debated) complexity metric for computer software is
cyclomatic complexity, originally developed by Thomas McCabe [MCC76], [MCC89]
and discussed in detail in Chapter 14.

Zuse ([ZUS90], [ZUS97]) presents an encyclopedic discussion of no fewer than 18
different categories of software complexity metrics. The author presents the basic
definitions for metrics in each category (e.g., there are a number of variations on the
cyclomatic complexity metric) and then analyzes and critiques each. Zuse’s work is
the most comprehensive published to date.

15.4.7 Operation-Oriented Metrics

Because the class is the dominant unit in OO systems, fewer metrics have been pro-
posed for operations that reside within a class. Churcher and Shepperd [CHU95] dis-
cuss this when they state: “Results of recent studies indicate that methods tend to be
small, both in terms of number of statements and in logical complexity [WIL93}, sug-
gesting that the connectivity structure of a system may be more important than the
content of individual modules.” However, some insights can be gained by examin-
ing average characteristics for methods (operations). Three simple metrics, proposed
by Lorenz and Kidd [LOR94], are appropriate:

Average operation size (OS,). Although lines of code could be used as an in-
dicator for operation size, the LOC measure suffers from a set of problems discussed
in Chapter 22. For this reason, the number of messages sent by the operation pro-
vides an alternative for operation size. As the number of messages sent by a single
operation increases, it is likely that responsibilities have not been well-allocated
within a class.

Operation complexity (OC). The complexity of an operation can be computed
using any of the complexity metrics proposed for conventional software [ZUS90]. Be-

Cova

Inferface design
mefrics are fine, but
above all else, be
absolutely sure that
your end-users like the
interface and are
comfortable with the
interactions required.

CHAPTER 15 PRODUCT METRICS 489

cause operations should be limited to a specific responsibility, the designer should
strive to keep OC as low as possible.

Average number of parameters per operation (NP,,g). The larger the number
of operation parameters, the more complex the collaboration between objects. In
general, NP, should be kept as low as possible.

15.4.8 User Interface Design Metrics

Although there is significant literature on the design of human/computer interfaces
(Chapter 12), relatively little information has been published on metrics that would
provide insight into the quality and usability of the interface.

Sears [SEA93] suggests that layout appropriateness (LA) is a worthwhile design
metric for human/computer interfaces. A typical GUI uses layout entities—graphic
icons, text, menus, windows, and the like—to assist the user in completing tasks. To
accomplish a given task using a GUI, the user must move from one layout entity to
the next. The absolute and relative position of each layout entity, the frequency with
which it is used, and the “cost” of the transition from one layout entity to the next all
contribute to the appropriateness of the interface.

/ hlu a baast one principal of user inferfuce design by looding a dishwasher. if yoo crowd

Kokol and his colleagues [KOK95] define a cohesion metric for Ul screens that
measures the relative connection of on-screen content to other on-screen content.
If data (or other content) presented on a screen belongs to a single major data ob-
ject (as defined within the analysis model), Ul cohesion for that screen is high. If
many different types of data or content are presented and these data are related to
different data objects, UI cohesion is low. The authors provide empirical models for
cohesion [KOK95].

In addition, direct measures of Ul interaction can focus on the measurement of
time required to achieve a specific scenario or operation, time required to recover
from an error condition, counts of specific operations or tasks required to achieve a
use-case, the number of data or content objects presented on a screen, text density
and size, and many others. However, these direct measures must be organized to
create meaningful Ul metrics that will lead to improved Ul quality and/or improved
usability.

It is important to note that the selection of a GUI design can be guided with met-
rics such as LA or Ul screen cohesion, but the final arbiter should be user input based
on GUI prototypes. Nielsen and Levy [NIE94] report that “one has a reasonably large
chance of success if one chooses between interface [designs] based solely on users’
opinions. Users’ average task performance and their subjective satisfaction with a
GUI are highly correlated.”

492

€

00 testing can be quite
complex. Metrics can
assist you in fargefing
festing resources af
threads, scenarios, and
packages of classes
that are “suspect”
based on measured
characteristics. Use
them.

PART TWO SOFTWARE ENGINEERING PRACTICE

Binder [BIN94] suggests a broad array of design metrics that have a direct influ-
ence on the “testability” of an OO system. The metrics consider aspects of encapsu-
lation and inheritance. A sampling follows:

Lack of cohesion in methods (LCOM).!5 The higher the value of LCOM, the
more states must be tested to ensure that methods do not generate side effects.

Percent public and protected (PAP). This metric indicates the percentage of class
attributes that are public or protected. High values for PAP increase the likelihood of
side effects among classes because public and protected attributes lead to high po-
tential for coupling (Chapter 9).'¢ Tests must be designed to ensure that such side ef-
fects are uncovered.

Public access to data members (PAD). This metric indicates the number of
classes (or methods) that can access another class'’s attributes, a violation of encap-
sulation. High values for PAD lead to the potential for side effects among classes.
Tests must be designed to ensure that such side effects are uncovered.

Number of root classes (NOR). This metric is a count of the distinct class hier-
archies that are described in the design model. Test suites for each root class and the
corresponding class hierarchy must be developed. As NOR increases, testing effort
also increases.

Fan-in (FIN). When used in the OO context, fan-in for the inheritance hierarchy is
an indication of multiple inheritance. FIN > 1 indicates that a class inherits its at-
tributes and operations from more than one root class. FIN > 1 should be avoided
when possible.

Number of children (NOC) and depth of the inheritance tree (DIT).!” As
we discussed in Chapter 14, superclass methods will have to be retested for each
subclass.

All of the software metrics introduced in this chapter can be used for the develop-
ment of new software and the maintenance of existing software. However, metrics
designed explicitly for maintenance activities have been proposed.

IEEE Std. 982.1-1988 [IEE94] suggests a software maturity index (SMI) that provides
an indication of the stability of a software product (based on changes that occur for
each release of the product). The following information is determined:

15 See Section 15.4.3 for a description of LCOM.

16 Some people promote designs in which none of the attributes are public or private; that is, PAP =
0. This implies that all attributes must be accessed in other classes via methods.

17 See Section 15.4.3 for a description of NOC and DIT.

CHAPTER 15 PRODUCT METRICS 493

M; = the number of modules in the current release

F. = the number of modules in the current release that have been changed

F, = the number of modules in the current release that have been added

F,; = the number of modules from the preceding release that were deleted in
the current release

The software maturity index is computed in the following manner:
SMI = [M; — (F, + F. + F))l/My

As SMI approaches 1.0, the product begins to stabilize. SMI may also be used as a
metric for planning software maintenance activities. The mean time to produce a re-
lease of a software product can be correlated with SMI, and empirical models for
maintenance effort can be developed.

SorTwWARE TooLSs

s Product Metrics

Q Obijective: To assist software engineers in Metrics4C, developed by +1 Software Engineering
developing meaningful metrics that assess the (www.plus-one.com/Metrics4C_fact_sheet.html),

work products produced during analysis and design computes a variety of architectural, design, and code-

modeling, source code generation, and testing. oriented metrics as well as project-oriented metrics.

Rational Rose, developed by Rational Corporation
{www.rational.com), is a comprehensive tool set for
UML modeling that incorporates a number of mefrics
analysis features.

RSM, developed by M-Squared Technologies
(msquaredtechnologies.com/m2rsm/index.html),
computes a wide variety of code-oriented metrics for
C, C++ and Java.

Mechanics: Tools in this category span a broad array of
metrics and are implemented either as standalone
applications or (more commonly) as functionality that exists
within tools for analysis and design, coding or festing. In
most cases, the metrics tool analyzes a representation of the
software (e.g., a UML model or source code) and develops
one or more mefrics as a result.

Representative Tools'8 Understand, developed by Scientific Toolworks, Inc.
Krakatau Metrics, developed by Power Software {www.scitools.com), calculates code-oriented metrics
(www.powersoftware.com/products), computes for a variety of programming languages.
complexity, Halstead, and related metrics for
\ C/C++ and Java. /

_15.8 SUMMARY

Software metrics provide a quantitative way to assess the quality of internal product
attributes, thereby enabling a software engineer to assess quality before the product
is built. Metrics provide the insight necessary to create effective analysis and design
models, solid code, and thorough tests.

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
in most cases, tool names are trademarked by their respective developers.

494

PART TWO SOFTWARE ENGINEERING PRACTICE

To be useful in a real world context, a software metric must be simple and com-
putable, persuasive, consistent, and objective. It should be programming language
independent and provide effective feedback to the software engineer.

Metrics for the analysis model focus on function, data, and behavior—the three
components of the analysis model. Metrics for design consider architecture,
component-level design, and interface design issues. Architectural design metrics
consider the structural aspects of the design model. Component-level design met-
rics provide an indication of module quality by establishing indirect measures for
cohesion, coupling, and complexity. User interface design metrics provide an in-
dication of the ease with which a GUI can be used.

Metrics for OO systems focus on measurement that can be applied to the class
and design characteristics—localization, encapsulation, information hiding, inheri-
tance, and object abstraction techniques—that make the class unique.

Halstead provides an intriguing set of metrics at the source code level. Using the
number of operators and operands present in the code, a variety of metrics are de-
veloped to assess program quality.

Few product metrics have been proposed for direct use in software testing and
maintenance. However, many other product metrics can be used to guide the test-
ing process and as a mechanism for assessing the maintainability of a computer
program. A wide variety of OO metrics have been proposed to assess the testabil-
ity of an OO system.

[ALB79] Albrecht, A. J., “Measuring Application Development Productivity,” Proc. IBM Applica-
tion Development Symposium, Monterey, CA, October 1979, pp. 83-92.

[ALB83] Albrecht, A.]., and J. E. Gaffney, “Software Function, Source Lines of Code and Devel-
opment Effort Prediction: A Software Science Validation,” IEEE Trans. Software Engineering,
November 1983, pp. 639-648.

[BAS84] Basili, V. R, and D. M. Weiss, “A Methodology for Collecting Valid Software Engineer-
ing Data,” IEEE Trans. Software Engineering, vol. SE-10, 1984, pp. 728-738.

[BER95] Berard, E., “Metrics for Object-Oriented Software Engineering,” an Internet posting on
comp.software-eng, January 28, 1995.

[BIE94] Bieman, J. M., and L. M. Ott, “Measuring Functional Cohesion,” IEEE Trans. Software En-
gineering, vol. SE-20, no. 8, August 1994, pp. 308-320.

[BIN94] Binder, R. V., “Object-Oriented Software Testing,” CACM, vol. 37, no. 9, September
1994, p. 29.

[BRI96] Briand, L. C., S. Morasca, and V. R. Basili, “Property-Based Software Engineering
Measurement,” [EEE Trans. Software Engineering, vol. SE-22, no. 1, January 1996,
pp- 68-85.

[CAR90] Card, D. N, and R. L. Glass, Measuring Software Design Quality, Prentice-Hall, 1990.

[CAV78] Cavano, J. P, and J. A. McCall, “A Framework for the Measurement of Software Qual-
ity,” Proc. ACM Software Quality Assurance Workshop, November 1978, pp. 133-139.

[CHA89] Charette, R. N., Software Engineering Risk Analysis and Management, McGraw-Hill/
Intertext, 1989.

[CHI94] Chidamber, S. R., and C. F. Kemerer, “A Metrics Suite for Object-Oriented Design,” IEEE
Trans. Software Engineering, vol. SE-20, no. 6, June 1994, pp. 476-493.

